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1 Introduction

As portrayed in Tom Clancy’s novel ”The Hunt for Red Oc-
tober” (and the subsequent movie), precise localization and
tracking of submarines in the ocean is difficult. The dif-
ficulty lies in the inherent environmental uncertainties that
affect acoustic propagation in the ocean. In active acous-
tic detection a source device (sonar) transmits an acoustic
signal into the surrounding environment, and the acoustic
returns obtained from a set of receivers are processed to ex-
tract echoes from underwater objects. These echoes provide
estimates of the position and, over time, the heading of a
target.

However, numerous factors limit the accurate recon-
struction of the target’s location and heading. Uncertain
temperature-salinity depth profile information results in in-
accurate prediction of the curvature of the acoustic rays.
Uncertain bathymetry (knowledge of the ocean bottom) in-
cludes misregistered maps, data gaps in maps, temporal
changes to the ocean bottom, and limited knowledge of
the mineral content of the ocean bottom. These factors
again limit the accuracy of position estimations based on
the acoustic returns. Finally, local oceanic effects (e.g., in-
ternal waves, thermal currents, fine-structure) also impact
the acoustic return and thus add to the uncertainty surround-
ing the target’s position. The resulting uncertainty has four
dimensions: latitude, longitude, depth, and signal strength.
The sea bottom data contains multi-variate physiographic
information (region data associated with soil types) and
depth measurements that are subject to multi-dimensional
uncertainty. The target state prediction process (i.e. deter-
mining the position, heading, etc. of a target) involves data
that spans multiple dimensions caused by the uncertainties
discussed above.

We investigate how to represent the resulting multi-
variate information and multi-dimensional uncertainty by
developing and applying candidate visual techniques. Al-
though good techniques exist for visualizing many data
types, less progress has been made on how to display uncer-
tainty and multi-variate information, and this is especially
true as the dimensionality rises. At this time, our primary
focus is to (1) develop the statistical characterizations for the

environmental uncertainty (described only briefly in this pa-
per) and (2) develop a visual method for each characteriza-
tion. The mariner community needs enhanced characteriza-
tions of environmental uncertainty now, but the accuracy of
the characterizations is still not sufficient enough and there-
fore formal user evaluations cannot take place at this point
in development. We received feedback on the applicabil-
ity of our techniques from domain experts. We used this in
conjunction with previous results to compile a set of devel-
opment guidelines (some obvious, others not).

We first review a select number of applicable visualiza-
tion techniques. We then describe the investigations for
representing the bathymetric information in Section 3 and
the target state estimation uncertainty in Section 4. Sec-
tion 5 describes briefly the display-system architecture we
developed to demonstrate the visual candidates. Finally, in
Section 6 we summarize the results and compile a list of
guidelines for developing visualization techniques for multi-
dimensional uncertainty and multi-variate information.

2 Review of Applicable Visualization Techniques

Pseudo-coloring is a popular approach for environmental [3]
and meteorological [2] data in which colors are assigned
based on the type of information and uncertainty. Much
visualization for geographic data rely on glyphs (e.g., iso-
bars, tufts). It is natural to map the display parameters of the
glyphs to the information associated with the data. Param-
eters that have been demonstrated include color, thickness,
opacity, and scale [6].

Multi-sensory modalities such as haptics and sound [5]
have been utilized when the visual approaches have been
exhausted—typically the case for multi-dimensional data.
Modifications to geometry [6] such as surface displace-
ments, fat surfaces, and bumps show uncertainty about in-
terpolated surface locations. Animated surfaces [1, 6] can
show the range of locations over which a surface might lie
as well as the range for other data types.

For a more complete review see [4, 6].

3 Representing Sea Bottom Information

Our research investigated representations of depth measure-
ments containing multiple dimensions of uncertainty and



Figure 1: Images show from left to right a combination of physiographic region data and 1D depth uncertainty using the
following visual techniques: (a) color, (b) cylinder glyphs and (c) sphere glyphs. In (a) shades of yellow are used for the
uncertainty and the remaining colors for the physiographics regions, which are also labeled and a key is available not shown
in the image.

how to combine them with the physiographic region data as-
sociated with soil types. We then explored adding additional
feature information to the uncertainty representation. This
section presents results for the 1D, 3D, and 4D cases for un-
certainty and also shows how to represent multi-dimensional
uncertainty for multi-variate information.

3.1 One-Dimensional Uncertainty
We began with a sea-bottom dataset (described in Sidebar 1)
provided by NRL-Stennis. One of our goals was to develop
visual techniques that combine the bathymetric data with the
uncertainty in a manner that allows cross-correlation of the
uncertainty with the proper locations of geographical con-
tent. Since the bathymetric dataset ranges over several phys-
iographic regions, each with differing depths and soil types,
we used a coloring and text-labeling scheme to distinguish
the different physiographic regions. We generated a surface
from the depth data and applied the texture composed of the
colored regional data. We scaled the depths differently than
the latitude and longitude since the range of depths (100 m
to 2000 m) is quite small compared to the range of latitude
and longitude (each spans over 200 km). Three visual tech-
niques were developed for representing the 1D uncertainty
in the depth. Uncertainty value thresholds assured that no
representations were shown at sample points where the un-
certainty was less than a specified threshold value.

The first method applies a range of intensities of one color
to a sample point based on the degree of uncertainty at that
point. To avoid confusion, we selected colors that do not
conflict with the colors used for the phyiographic regions.
The intensity of the color is mapped proportionally to the
degree of uncertainty. We use a picture-in-window approach
to show a wide-area and close-up view of the technique in
Figure 1a, using yellow for the uncertainty.

The second approach uses cylinder glyphs placed at the
corresponding sample point, where the height of the cylin-
der corresponds to the degree of uncertainty and is aligned in
the dimension associated with the depth data. We show the
technique applied to the sea bottom data in Figure 1b. The

cylinder works well for distinguishing the degree of uncer-
tainty when observed from the side. However, it is difficult
to interpret the glyphs (and associated uncertainty) when ob-
served from above. The choice of shape for the glyphs is an
important decision to be made for the design of a technique.

The third technique we developed avoided viewpoint de-
pendencies. We determined that sphere glyphs (Figure 1c)
would work well for the 1D uncertainty since the sphere al-
lows observations to be performed from all viewpoints. A
drawback to this approach is that the dimension in which
the uncertainty lies can not be identified from observing the
sphere glyph. This may produce conflicting perceptions to
what the glyph refers. However, our domain experts pre-
ferred the sphere glyph over the others because it allowed
them to observe the 1D uncertainty from all viewpoints.

3.2 Three-Dimensional Uncertainty
To develop visualization techniques for the three-
dimensional case consisting of uncertainty in latitude,
longitude and depth, we followed three goals. The first
goal is to provide cross-correlation between the uncertainty
information and the underlying geographic data. The
second goal is to reduce view dependence in techniques
when possible. The third goal takes into consideration the
domain knowledge of the task to determine if wide-area
or local-scale observations (or both) are required. Thus,
if a user wants to gain an understanding where the most
significant uncertainty lies, visual techniques that work best
for wide-area observations should be used. If the user wants
to learn the value of an attribute or differentiate between
two, local-scale visualization techniques should be used.

We generated a dataset containing uncertainty of the 3D
surface shape by extending the 1D, directed uncertainty in
the bathymetric dataset. That is, by applying the 1D uncer-
tainty in the bathymetry data, we can generate the uncer-
tainty in the 3D surface from which the bathymetric mea-
surements were taken. The latitude and longitude uncer-
tainty estimates were generated by keeping consistent the
essential features (scale and distribution) of the true uncer-



Figure 2: Images show three approaches using box glyphs for 3D uncertainty. (a) Left shows boxes placed at surface sample
points. (b) Middle shows regularly-spaced boxes placed on plane above surface. (c) Right shows snapshot of animation
approach with vibrating boxes based on the degree of uncertainty in latitude and longitude.

tainty in the sea bottom measurements. For the first in-
vestigations, we consider the case where the uncertainty is
symmetric in latitude and longitude directions about sample
points lying on a regular uniform grid. A later investigation
considers the true situation where the centers for the uncer-
tainty estimates do not lie on a regular grid.

We used a glyph technique that maps depth, latitude
and longitude uncertainty to the dimensions of a box.
We applied the box-glyph approach to the symmetric 3D-
uncertainty dataset. The box glyphs are generated by cen-
tering a unit-size cube at each sample point and scaling it
by a factor proportional to the uncertainty in each corre-
sponding dimension. The scale of each box glyph is ad-
justed consistently across all dimensions to prevent overlaps
with neighboring boxes while conserving the proper corre-
lation between the error in each dimension. Figure 2a shows
a side-to-top view of the box glyphs as they are applied to
the dataset. We replaced the color-coded regional map of the
physiographic regions with a low-resolution bottom texture
of the sea-bottom terrain.

We were not able to satisfy the view-independence goal
with the box-glyph approach, but were able to satisfy the
other goals. Observations of the depth uncertainty can be
made from the side, and the latitude and longitude uncer-
tainty from the top. Wide-area observations give a general
idea where the uncertainty is most predominant, but local-
scale observations are hindered by occlusions between the
glyphs and the surface. The occlusions occur most fre-
quently where there are sloped surfaces, making it hard to
distinguish variations in the uncertainty from the side and
top views. Besides the occlusions, it is also difficult to dis-
tinguish depth variation when there is no common visual
reference to compare heights.

To reduce the limitations we revised our approach by
placing box glyphs on a planar surface elevated above the
highest point in the bathymetric surface as shown in Fig-
ure 2b. Elevating the glyphs reduced the visual correlation
between the uncertainty and data unless it is viewed using
an orthographic projection from above looking down. This

lack of correlation is most obvious from the side views, but
the tradeoff is a significantly improved distinction of the
heights (and correspondingly the depth uncertainty) of the
glyphs. Having the glyphs placed next to each other on the
same plane also improves the distinction of the latitude and
longitude uncertainty variation when viewed locally.

A third method was tried that used animation to represent
the uncertainty. This method maps a range of motions to the
glyphs based on the degree of uncertainty. A large range of
motion corresponds to high uncertainty, and a small range
to low uncertainty. We applied the approach for the lati-
tude and longitude uncertainty by translating the box glyph
randomly from the sample-point center proportionally to the
uncertainty in each dimension for each frame. We attempt
to demonstrate the method by showing a photo of the screen
with the animation snapped by a camera with a long expo-
sure time in Figure 2c. We found that the areas where the
largest range of motion occur attracts the user’s attention the
most. The technique works very well for differentiating re-
gions containing different degrees of uncertainty in latitude
and longitude.

The planar approach was most effective of the three. We
further improved the planar technique by adding a 2D grid
to the plane that provides correspondence with the sample-
point centers of the measured data. A user is now able to
easily differentiate the degree of uncertainty in alike dimen-
sions (latitude and longitude) between sample points by us-
ing the grid lines as a reference. We show a top-view of the
improved approach in Figure 3a.

Next we addressed the case where the uncertainty values
lie on an irregular grid. We applied the planar approach used
for the regular-grid data to the irregularly distributed dataset.
We modified the technique by shifting the box glyphs ac-
cording to the “actual” center (the midpoints) of the range
of uncertainty in latitude and longitude. We indicate the cen-
ter of each data element by drawing a cross-hair marking on
the tops of the boxes. The approach is shown in Figure 3b.
Notice the change in position of the boxes with respect to a
view of the same range-difference symmetric data shown in



Figure 3: Box-glyph approach applied for: (a) symmetric latitude and longitude uncertainty and (b) non-symmetric uncer-
tainty. Boxes are shifted in the latter case. Cross-hair markings indicate sample-point centers.

Figure 3a.
This method still works well for visualizing the variation

of the uncertainty from a wide-area viewpoint. On a local
scale, the secondary visual cue (cross-hair markings) effec-
tively indicates how much the data is shifted in both dimen-
sions. A minor drawback is the data must be down-scaled in
order to avoid having overlapping boxes.

3.3 Four-Dimensional Uncertainty

The four-dimensional uncertainty was visualized by treat-
ing the 3D measurement uncertainty as a function of time.
Datasets are sometimes compiled from multiple scans of the
bottom, which may take place several years apart. In some
cases, the bottom may have shifted, especially in areas with
high vertical gradients. The use of different sonar scans can
also produce multiple datasets for the same location. We
treat this data as being four-dimensional to visualize the as-
sociated uncertainty.

We first consider the case when multiple non-overlapping
datasets (in latitude and longitude) are connected together
to make a larger contiguous dataset. The dataset is four-
dimensional since the time elements vary between separate
pieces. We created a 4D dataset by splitting the symmet-
ric 3D dataset into four groups and assigning a unique time
element to each. We developed different-shaped 3D glyphs
(each has the scaling properties of the box glyphs used in
previous representations) for each dataset group. Figure 4a
shows the following generated shapes: pyramid, upside-
down pyramid, wedge and modified box. This technique is
effective locally, since the properties of the glyphs are easy
to distinguish. However, there can be confusion in determin-
ing the regions of highest uncertainty for a wide-area view,
since the uncertainties associated with each glyph type may
have different scale distributions.

When the elements from separate datasets overlap in the
3D space, the visualization task is more challenging. Some
rules for reconciling the overlapping information have been
suggested by Smith et al. [7] (e.g., a node with lower uncer-
tainty supersedes a node with greater uncertainty, a newer
node supersedes and older node (particularly when the old

data is known to be inadequate) and a shoaler node super-
sedes a deeper node). The data could also be combined by
averaging. We did not fully address this case, but suggest
the following two visualization strategies be applied. Show
the combined (or selected) 3D component of the data using a
primary visual cue. Then show the elements of the data that
were lost and/or parameters of the dataset that were used in
the combining operation with secondary visual cues.

3.4 High Degree of Multi-variate Information
Here we address the case when the degree of informa-
tion to be presented exceeds the number of effective vi-
sual approaches that can be used to represent the informa-
tion. When combining the four dimensions of uncertainty
for the sea-bottom measurements with the information about
the physiographic regions, landmark features, map informa-
tion and more, the quantity of information to be presented
may exceed the number of effective visualization channels
for representing the information. This opens the door for
exploring non-visual approaches (e.g., touch and sound)
and combinations of the senses (multi-modal visualization).
Combining senses to convey information may be superior to
what could be gained with only one modality. The reason
being that one modality may reinforce the other, or a user
may be able to effectively fuse different information com-
ing from different modalities. There has been little research
to date on multi-modal “visualization” of uncertainty.

To gain an understanding of how effective these ap-
proaches are, we investigated haptics and combinations of
haptic and visual approaches. Haptic approaches utilize
the user’s sense of touch. We utilized Immersion’s Cyber-
Force/Grasp system1 shown in the lower-left corner of Fig-
ure 4b to provide force feedback to the user’s hand. The
device can be programmed to map the interactions of an on-
screen virtual hand to a user-worn exo-skeleton device (Cy-
berGrasp), which applies forces to the user’s fingers. The
user then has the perception that he/she is feeling the virtual
object.

We began by combining haptic input with the 4D glyphs

1Immersion, www.immersion.com/3d/products/cyberforce.php



Figure 4: Methods for datasets of four or more dimensions. (a) Left shows multi-shape glyphs with characteristics for three
dimensions of information. (b) Right shows a haptic device being used to perceive information about a dataset, which can
be applied for one or more dimensions of information.

from the previous investigation. We mapped one of the
dimensions of the 4D uncertainty to the haptic channel.
Specifically, we mapped the depth uncertainty to the degree
of stiffness of the glyphs. Large values of uncertainty then
produced greater force-feedback to the user’s fingers. The
box glyphs corresponding to the very low uncertainty val-
ues were thresholded so they cannot be felt. This mapping
of uncertainty to stiffness seems inverted (i.e. should it not
be the case that certain objects are stiffer?), but our goal is
to use the haptics only when necessary and in this case to
highlight where the features have the most uncertainty. A
dataset is haptically observed on a general scale using an
arm sweeping motion. A perfect dataset should allow the
user to perform complete sweeps through the dataset with-
out interference. We only want to indicate where the degrees
of uncertainty are highest (infrequent numbers of locations).

We utilized the stiffness characteristics by developing a
set of interaction methods that allow the user to observe the
data on both a local and wide-area scale. The forces ap-
plied to the fingers by the CyberGrasp provide the ability to
inspect the surface structure of objects locally. The forces
applied at the wrist by the CyberForce when combined with
an arm-sweeping motion allow the user to gain a rough un-
derstanding as to where the most prominent uncertainty lies
in the dataset. We estimated from our investigations that
three to five different ranges of uncertainty could be differ-
entiated with the arm-sweeping approach, which is less than
with visual methods.

On a local scale, the user can distinguish two objects by
inspecting each individually with the fingers. The fidelity
of the haptics equipment is critical for the differentiation.
From what we have observed with the CyberGrasp and the
shapes we used, there was only a small range of distinguish-
able forces. We could differentiate between the glyphs with
pointed tops (e.g., pyramid and wedge) from the glyphs with
flat tops (e.g., box and upside-down pyramid), but we could
not easily differentiate the pyramid and the wedge. Over-
all, our investigations indicate that the use of haptics has

promise for conveying information about data, but in order
for haptics to be used effectively there needs to be improve-
ments in the fidelity and usability of the hardware.

4 Representing Target State Estimation Uncertainty

One method for estimating the target state (e.g., position
and velocity) of submarines is the use of multi-static active
acoustic sensors. A number of buoys are distributed over an
ocean area. The charges on the source buoys are detonated
sequentially, one every few minutes. Between detonations,
the hydrophones in the receiver buoys listen for echoes of
the shockwave as it scatters off objects, potentially includ-
ing a target submarine. The time between the reception of
the direct blast and an echo produces an ellipse of possible
locations for the echo producer. By accumulating a num-
ber of these echoes from the target over time, it is possible
to identify a distribution for the position and heading of the
target.

Present systems include signal processing algorithms that
have been developed to automatically process the time-
series at the receiver hydrophones and identify detections.
These algorithms produce a set of time values for each hy-
drophone where the signal or matched-filter output exceeds
some threshold. Each of these “detections” comes from one
of three things: random stochastic fluctuations in the noise
signal (false alarms), clutter echo, or a target echo.

In order to use these automatic detections to estimate tar-
get state, we adapted the Likelihood Ratio Tracking (LRT)
algorithm [8]. The LRT algorithm uses a recursive Bayesian
framework to update prior target state information with
newly received sensor information. In the standard frame-
work, the algorithm begins with a prior state over a gridded
state space with position and velocity as dimensions. We
extended the state space to include an environmental dimen-
sion that accounts for uncertainty in the environmental pre-
dictions. As sensors report information, their information
content is incorporated into the posterior likelihood ratio
over the state space by the use of a measurement likelihood



Figure 5: (a) Left shows the LRT display system with one frame from a likelihood image sequence. Multiple colors are used
to represent the range of likelihood values. (b) Right shows the 3D desktop software demonstating the 3D color-height map
approach. A red submarine is placed and oriented at the position of predicted maximum likelihood, and a white submarine
at the ground truth position and heading. (See inset at upper right.) The ground truth was recorded during the capture of
acoustic echo data.

ratio function. Between sensor measurements, the likeli-
hood ratio function evolves according to a motion model
prescribed for the target.

We developed visual representations for the extended
Bayesian state space which includes a dimension of envi-
ronmental uncertainty parameterized by mean signal excess
prediction error. The state space for the likelihood ratio
functionL(x, y, t, theta, SE) is parameterized by five di-
mensions wherex andy are the latitude and longitude spa-
tial components,θ is the target heading,SE is the mean
signal excess prediction error andt is time. We first focus
on what is primarily meaningful to the end-user: the posi-
tions (x, y) and headingsθ corresponding to the maximum
likelihood or maximum or mean aggregations of likelihood
values over the state space at a given timet. To present
this information we first consider a projection of the state
space that utilizes no more than the maximum number of
display dimensions that can be shown at once. We include
time with the standard three Euclidean spatial display di-
mensions since the dataset is generated as a function of time
and therefore can be presented as an animation over the time
dimension. Then we investigate higher-dimensional subsets
of the state space which map to more than the four display
dimensions (i.e. three spatial dimension and time denoted
by (X, Y, Z, T )) and require sophisticated visual techniques
to present the information. We divide our investigations
into sub-space projections of the state-space dimension vari-
ables: 3D, 4D and 5D.

4.1 Three-Dimensional State Data

We start by developing visual techniques for the 3D subsets
of the state space that include the position(x, y) and timet
dimensions. When we consider mappings of the state space

to display variables, the values of the likelihood functionL
are included. Therefore, the display mappings will entail
sub-space projections on the 6D space(x, y, t, θ, SE,L).
A single projection of the display space of the form
(subspace vars) = projsubspace vars(x, y, t, θ, SE,L)
we denote using the notationg(subspace vars) =
projsubspace vars(L(x, y, t, θ, SE)). Notice we include
the range of the function encoded in the function nota-
tion for each single projection. The set of sub-space pro-
jections encompassing the remaining variables not used
in the projection is denoted using the function notation
f(remaining vars). For example, the 3D sub-space pro-
jections of the state space (or 4D sub-space projections of
the display space) that we address here on position(x, y)
and time t (for display space representation includeL)
are f(θ, SE) = {projx,y,t(L(x, y, t, θ, SE))}, where θ
and SE are typically in the ranges[0, 360] degrees and
[−20 dB, +20 dB], respectively.

To represent the space of dataf(θ, SE) a specific value
for SE andθ can be specified by the user interface or aggre-
gation algorithms can be performed across the two dimen-
sions. Figure 5a shows a frame from the LRT engineering
display system that presents 2D animations of the spaces
f(θ, SE) for specificθ andSE. The image is color-coded
based on a logarithmic scale of the likelihood valuesL at
each position(x, y). Log likelihood ratio (LLR) values are
greater than zero. The likelihood values are mapped in de-
scending order using a “ROYGBIV” color scale which maps
the highest values to red and lowest (LLR < 0) to violet.
The warmest colors (reds and oranges) represent the areas
where it is likeliest that a target is located.

The LRT engineering display system uses two of the three
Euclidean display dimensions and time(X, Y, T ). The an-



Figure 6: First visual approaches for 4D sub-space projections of 5D dataset. (a) Left shows frame of 2D-image sequences
placed side-by-side. (b) Middle shows mean likelihood across SE using color-height map and variance using varying-size
sphere glyphs. (c) Right shows mean likelihood across heading using color-height map, maximum likelihood across heading
and heading using arrow length and direction, and difference of maximum and mean using red color.

imations show regions of red and orange form and move
across the latitude and longitude dimensions over time. This
indicates a lock on a target submarine and shows the head-
ing that the target takes over time. What cannot be inferred
very precisely are the values of the likelihood ratios that the
colors represent. It is sometimes hard to distinguish if one
shade of a color represents a higher likelihood value than
another even with a color scale co-located on the interface.
It seemed logical to try a mapping of the likelihood values
to a geometric scale. So we utilized the EuclideanZ dimen-
sion and mapped the log likelihood values to surface height
in addition to the colors. The 3D LRT system in Figure 5b
shows the new mapping. Note that Figure 5b’s view of the
dataset does not correspond with the view in Figure 5a.

The height mapping redundantly shows the same prop-
erty of the dataset as the coloring technique, but we feel
that judgements of the data’s values can be made more pre-
cisely with the geometric encoding. Additionally, the user
can draw on a second cue other than warm colors, that be-
ing surface peaks, to identify where the likeliest targets are
positioned. The user can make clearer distinctions about the
likeliest location by observing the data from a side view.
One drawback is the surface mapping does have the poten-
tial to be misconstrued with representations used to show
geographic data. However, the mariner community is warm-
ing up to a system called IMAT2 which combines 3D geo-
metric surfaces for acoustic data with 3D bathymetric sur-
faces. We believe that we will be able to adapt the color
and/or texturing schemes in order to reduce any ambigui-
ties that the geometric structure may produce. We applied
the color-height mapping as the primary visual cue for the
higher dimensional sub-space projections of the 5D dataset.

We also provide iconographic and text cues to indicate
the location and heading of the likeliest targets. We place
the text “likely target” and a red submarine oriented with
respect to the headingθ at the highest peaks. The system

2IMAT, www.presearch-inc.com/imat.htm

also provides data aggregation inθ, in SE and in the 2D
space(θ, SE). In each case, the maximum likelihood val-
ues (highest threat) are computed and mapped to the surface
and color in the same manner as before. The values forθ
and/orSE are recorded for the maximum likelihood values
and used for the visualization (e.g., the submarine’s orienta-
tion is determined from the angleθ at maximum likelihood).

4.2 Four-Dimensional State Data

The set of 4D sub-space projections of the state space
are: (a)f(θ) = {projx,y,t,SE(L(x, y, t, θ, SE))} and (b)
f(SE) = {projx,y,t,θ(L(x, y, t, θ, SE))}. The setsf(θ)
andf(SE) have the formg(x, y, t, SE) andg(x, y, t, θ), re-
spectively. The first visual approach we developed extracts
the raw data image sequencesg(x, y, t, SEi), i = 1, 2, ..., n
for f(θ) andg(x, y, t, θi), i = 1, 2, ..., n for f(SE) and dis-
plays them side-by-side in one view as shown in Figure 6a.
This approach is effective for performing cross-correlation
of the data, but will not work for a large number of values for
the dimension associated with the separate image sequences
due to the limited viewing space.

The next approach was to place a glyph above the spatial
position for each data point to represent one of the data ele-
ments in the remaining two dimensions(θ, SE). Figures 6b
and 6c show examples using sphere glyphs and arrow glyphs
to represent values derived from theSE andθ dimensions,
respectively. Single and/or aggregated values for the dimen-
sion variables or the associated range values for both cases
can be applied to the properties of the glyphs. For example,
Figure 6c shows the headingθ for each position(x, y) by
placing an arrow glyph above the position and orienting it
in the directionθ. Some of the aggregations we performed
were mean, variance and maxima. The maximum works
best for indicating the likeliest locations for targets and the
mean and variance operations show a general view of the
distribution of the likelihood value across the dimensions.

To represent the setsf(SE) we keep in mind that show-
ing the mean and maximum data is important so the end-



Figure 7: (a) Left shows the arrow-glyph approach with filtering of the most significant mean likelihood and least significant
maximum likelihood regions. (b) Right shows sphere glyphs used for difference of maximum and mean likelihood for 4D
space across SE with the same filtering as in (a).

user is made aware of threats (likeliest target locations) on
a general scale across the whole dataset and for the worst-
case scenarios. To represent the setsf(SE) we applied the
color-height surface approach for the mean likelihood across
θ and used an arrow glyph to represent the heading and max-
imum likelihood values. The heading and maximum values
are mapped to the direction and length of the arrow, respec-
tively. Since the heading information does not directly cor-
relate with the mean data, which is mapped to the height
dimension of the color-height surface, we made a frame of
reference for the end-user to perform cross-correlations be-
tween the two attributes. We used two colors on each arrow
to represent the mean and maximum values. We colored the
proportion of the length corresponding to the mean value
yellow and the remaining portion red, which corresponds to
the difference of the maximum and mean values. The head-
ing associated with the mean computation is represented us-
ing the orientation of a submarine model placed at the max-
imum mean-likelihood value. The technique is illustrated in
Figure 6c.

The multi-colored arrow-glyph approach works better for
local observations than wide-area for conveying the signif-
icant threat information. The glyphs, which represent the
information associated with the maximum likelihood val-
ues across headings, clutter the display preventing the user
from being able to clearly comprehend the meaning of the
surface data. Based on these observations, we modified the
approach by removing the arrows that are associated with
a small difference between the maximum and mean values
and overlay the space where the peaks exist for the mean
data. We also normalized the lengths of the arrows and
raised them to avoid occlusions with the surface. We show
the improved approach in Figure 7a.

We used a similar approach to represent the setsf(θ) but
instead used a sphere glyph. We mapped the mean like-
lihood values acrossSE to the color-height map and the
difference of the maximum and mean likelihood values at
those locations to the radius of the spheres. We again ap-
ply a threshold to the display in order to show only the most

significant threats. We show this technique in figure 7b.

4.3 Five-Dimensional State Data

To represent the complete 5D state space, we discuss and
demonstrate two of the approaches we developed here. The
first approach takes the maximum of the likelihood values
acrossSE andθ for each given spatial position and time,
and displays them using the color-height mapping scheme.
This technique, shown in Figure 8a, shows the worst case
threat areas for all values of mean signal excess and head-
ing for the target. Notice the additional surface features that
appear versus the detail from the previous 4D color-height
surface mappings shown in Figures 7a and 7b. The elon-
gated red ridge in the figure shows the possible positions
where the submarine could be located for the specific time
t. As before, we placed a model and text at the location of
maximal value and oriented it with respect to the heading for
that location and likelihood value. This approach shows the
most significant information throughout the whole dataset
at once, however, this does not show all the useful statisti-
cal information (e.g., what values for each dimension pro-
duced the maximum likelihood) that would be interesting to
a statistician developing the models for the state-space un-
certainty.

We extended the visual approach to include the important
statistical information by combining the sphere and multi-
color arrow glyphs to make a new glyph. The sphere size
corresponds to the value ofSE which is used to compute
the maximum likelihood value. The arrow portion of the
glyph again maps the correlation between the mean and
maximum likelihood values (i.e., total length corresponds
to maximum, length of yellow portion corresponds to mean
and direction corresponds to headingθ). In the Figure 8b
we mapped the mean across the complete dataset at timet
to the primary surface. The sphere-arrow glyphs then show
the corresponding mean in yellow along the base of the ar-
row, and the red portion indicates how likely a target could
be located at the specified position. The idea is to draw the
user’s gaze towards the arrows with the longest portions of



Figure 8: (a) Left shows surface of maximum likelihood across 5D dataset, and models and labels for ground truth and
predicted target locations. (b) Right shows sphere-arrow glyph with value for SE mapped to sphere, difference of maximum
and mean likelihood, maximum likelihood and heading mapped to arrow and maximum likelihood using color-height map.

red which indicate where the target’s are likeliest to be other
than what is indicated from the surface color-height map-
ping. The sphere-arrow glyphs do somewhat clutter the dis-
play when not filtered, but still allow the most significant
information in the dataset to be conveyed to the end-user.
More work will be addressed in the future on this approach
and higher dimensional datasets.

5 Display System Architecture

We designed a display architecture that interoperates with
multiple virtual reality (VR) and non-VR display systems
(e.g., immersive room and desktop). The architecture con-
sists of a desktop and immersive-room interface, a dis-
tributed state-based graphics engine and a data synchroniza-
tion unit which ensures that each display panel has data for
the same time state. We are able to run standalone ap-
plications on the desktop and in our four-wall immersive
room driven by an eight-node graphics cluster. We utilized
OpenGL for the graphics engine and GLUT and VR Jug-
gler3 for the desktop and immersive-room interfaces, re-
spectively.

The desktop interface uses mouse input and graphical
pull-down menus. The immersive-room interface utilizes
a tablet PC and 6-DOF flightstick in order to provide inter-
action with a large number of options. The flightstick en-
ables the user to navigate the environment and to select a
few interface options using the buttons. The tablet PC con-
tains a Java interface with sliders and buttons for the inter-
face options. We linked the two devices to the distributed
state-based graphics engine using VRPN4 and a wireless
CORBA-based network protocol. The graphics engine uti-
lizes a state vector for the display and interface states. The
state engine is distributed to each cluster node and updated
by the data synchronization unit (part of VR Juggler). Some
of the states include shading mode (e.g., wireframe, trans-
parency and lighting), sea-bottom and target-state display

3VR Juggler,www.vrjuggler.org
4VR Peripheral Network, www.cs.unc.edu/Research/vrpn

methods and toggle switches for information-layer features
(e.g., submarine model, text labels and graphic indicators).
We show a view of our system operating in the immersive
room in Figure 9.

Figure 9: Display System Operating in Immersive Room

6 Summary and Conclusions

We developed visual representations for real multi-
dimensional sea bottom uncertainty data, multi-variate in-
formation and multi-dimensional target state data. We ex-
plored the use of coloring methods, surface representations,
glyphs, haptics, iconographic imagery, animation and text
to represent the uncertainty, feature information and associ-
ated data. We designed an interoperable VR-display system
to explore the visualization approaches and the use of hap-
tics for information representations.

Coupling previous work with our own investigations, we
compiled the following set of guidelines for developing
good visual representations for multi-dimensional uncer-
tainty and multi-variate information.

• Determine a basis for reference when distinguishing
values of information (e.g., boxes on plane).

• Cross-correlation of visual representation of error with
data is important.



• Plan visual approach according to primary and sec-
ondary features.

• Plan visual approach for wide-area and local-scale ob-
servations where appropriate.

• For 3D representations, the effectiveness of the visual
approach should consider the changing viewpoint.

• In most cases, having consistent proportions for the di-
mensions of the data is desirable. There are exceptions
where it is desireable to exaggerate proportions in one
dimension to highlight the features of importance.

• Minimize interference between visual representations
for uncertainty, multi-variate properties of the data, and
the data.

• Presenting the data with multiple approaches or display
systems may be better at conveying the information.

These guidelines are general enough to apply to other task
domains besides underwater environmental uncertainty.

The visual representations that we developed show a
much richer summary of the underwater environmental un-
certainty than previous displays. We have presented the vi-
sual techniques and software to several U.S. Naval comman-
ders and domain experts in the acoustics field; the initial
feedback has been very positive.

Now that the Naval utility of these techniques has been
established, demonstration and validation in the fleet are the
next steps. This can only be accomplished through a formal
user study with potential end-users as the subjects. Based
on the initial feedback, we believe that the visualizations
whose development we have discussed here provide more
complete and accurate insight into the data. We hypothesize
that the visualizations will lead to better analysis, and sub-
sequently, better inferencing about the data. We hope that
once the LRT system transitions to the U.S. Naval Fleet, it
will lead to more formal developments of the visual tech-
niques including end-users in future development from start
to finish.

Acknowledgements

We thank Bob Miyamoto and Marc Stewart (APL-UW),
Dan Fox and Jim Fulford (NRL-SSC), Larry Stone
(Metron), Brian LaCour (ARL-UT), Brian Calder (CCOM-
UNH), Erik Tomlin and Alex Pang for research contribu-
tions. This work was supported by the Office of Naval Re-
search.

Side Bar 1: Bathymetric Data Source

Bathymetric data exhibits four distinct physiographic re-
gions: continental shelf, continental slope, continental rise
and a trough. The continental shelf is the submerged part of
a continent, which typically has depths of 100 m to 400 m,
a slope around 0.4% and extends on average about 50 km

from shore. The continental slope is the outer edge of the
shelf, which extends to a depth as great as 4000 m and has
an average slope between 3% and 6%. The continental rise
begins the transition between the continental slope and the
deep ocean basin and generally inclines at about 1.7% [9].

The dataset we used was generated by NRL-Stennis5

from the Digital Bathymetric Data Base – Variable Resolu-
tion (DBDBV) [10]. The data covers a2◦ × 2◦ region with
resolution of 30 s× 30 s. It was then decimated to a resolu-
tion of 120 s× 120 s, for a final mesh of61×61 grid points.
The data has the following depth ranges: 80 m to 180 m for
the continental shelf, 180 m to 1500 m for the continental
slope/rise, and a trough at depth beyond 1500 m. The data
also has uncertainty estimates for the measurements.

References

[1] C. Ehlschlager, A. Shortridge, and M. Goodchild.
Visualizing spatial data uncertainty using animation.
Computers in GeoSciences, 23(4):387–395, 1997.

[2] E. Fauerbach, R. Edsall, D. Barnes, and
A. MacEachren. Visualization of uncertainty in
meteorological forecast models. InProceedings of
ICA Commission on Visualization, August 1996.

[3] D. Howard and A. MacEachren. Interface design for
geographic visualization: Tools for representing relia-
bility. Cartography and Geographic Information Sys-
tems, 23(2):59–77, 1996.

[4] C. Johnson and A. Sanderson. A next step: Visualizing
errors and uncertainty.IEEE Computer Graphics and
Applications, 23(5):6–10, September 2003.

[5] S. Lodha, C. Wilson, and R. Sheehan. LISTEN:
Sounding uncertainty visualization. InIEEE Visual-
ization ’96. IEEE, October 1996.

[6] A. Pang, C. Wittenbrink, and S. Lodha. Approaches
to uncertainty visualization. The Visual Computer,
13(8):370–390, 1997.

[7] S. Smith, L. Alexander, and A. Armstrong. The nav-
igation surface: A new database approach to creating
multiple products from high-density surveys.Interna-
tional Hydrographic Review, 3(2):2–16, August 2002.

[8] L. Stone, A. Barlow, and T. Corwin.Bayesian Multi-
ple Target Tracking. Artech House Publishers, January
1999.

[9] Paul Tchernia. Descriptive Regional Oceanography.
John Wiley and Sons, July 1980.

[10] U.S. Naval Oceanographic Office. Digital bathy-
metric data base MIL-PRF-32030, May 1998.
http://www.nima.mil/ast/fm/acq/dbdbv.pdf.

5NRL Stennis, www.nrlssc.navy.mil


	Introduction
	Review of Applicable Visualization Techniques
	Representing Sea Bottom Information
	One-Dimensional Uncertainty
	Three-Dimensional Uncertainty
	Four-Dimensional Uncertainty
	High Degree of Multi-variate Information

	Representing Target State Estimation Uncertainty
	Three-Dimensional State Data
	Four-Dimensional State Data
	Five-Dimensional State Data

	Display System Architecture
	Summary and Conclusions

